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INTRODUCTION 

Many scientists recognize invasive species as the number one environmental threat of the 

21
st
 Century (Stohlgren and Schnase, 2006). Invasive species pose threats to global ecosystems, 

including processes, functions, and the life they sustain (Mack et al., 2000). The invasion of non-

native plants, animals, and pathogens has escalated dramatically over the last few decades with 

the increase of trade, transportation, and other elements of globalization, often negatively 

affecting state, regional, national, and global ecosystems, economies, and human health. The 

economic costs and environmental consequences negatively affect all levels of society from 

indigenous cultures to world powers. The overall economic costs associated with invasive 

species in the United States are estimated to exceed $120 billion per year in terms of control 

costs, lost productivity, reduced water salvage, and reductions in rangeland quality and property 

values (Pimentel et al. 2000; 2005). The global economic costs of invasive species are estimated 

at $1.4 trillion annually, representing five percent of the global economy (Keller et al., 2007; 

Yemshanov et al., 2009). 

Early detection and ecological forecasting of invasive species are urgently needed for 

rapid response and remains a high priority for resource managers. Ecological niche models (also 

called species distribution models and habitat suitability models) are increasingly being used to 

model and map invasive species distributions. Combining statistical algorithms with geographic 

information systems (GIS), models attempt to predict probability of occurrence of a species by 

using presence-only or presence-absence data in combination with environmental variables to 

predict the species’ potential or actual distribution across a landscape (see recent reviews by 

Elith and Leathwick 2009; Franklin, 2009; Newbold, 2010). These models are based on 

Hutchinson’s (1957) classical niche concept: the distributions of species are constrained by biotic 

interactions (e.g., competition and predation) and abiotic gradients (e.g., elevation, temperature 

and precipitation; Elith and Leathwick, 2009; Franklin, 2009; Sinclair et al., 2010).  

Use of models for invasive species forecasting can be extremely challenging because the 

process attempts to statistically extrapolate the potential of species occurrences to novel 

environments or climates. Although widely accepted as a critical tool for invasive species 

management, models have been used cautiously because they typically violate the assumption 

that an organism is in (evolutionary) equilibrium with its environment (Vaclavik and 

Meentemeyer, 2009). However, that is simply the reality of invasive species science and the 

challenge with managing them. Different invasive species will exhibit varying degrees of 

equilibrium with their environment; for example, well established invaders may be in relatively 

greater equilibrium with their environment than early invaders. The degree of equilibrium for an 

invasive species is rarely as constant as for native species, and they often are better suited for 

conditions associated with anthropogenic and natural disturbances (e.g., fire, climate change). 

Additionally, intra-action within an invasive species population and interactions with its 

environment and other organisms (e.g., competition, predation) further add to the challenge of 

predicting distributions and risks. 
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Today’s ecological niche models generally rely on occurrence data collected from 

observations, field surveys, or aerial imagery. Occurrences may be presence-only data or 

presence and absence data. For most biological and species modeling efforts, presence and 

absence data performs best because they can be analyzed independently and against each other 

(e.g., Evangelista et al., 2008). For invasive species, however, there is greater uncertainty for 

absence data than with native species which has evolved within a particular ecosystem. In other 

words, we do not know if an absence point for an invasive species is a true absence or rather a 

point on the landscape that has yet to be invaded. Many studies and observations have 

documented a lag between the time a species is introduced and the time it displays invasive 

characteristics (Ellstrand and Schierenbeck, 2000; Allendorf and Lundquist, 2003). In some 

cases, an invasive species will exhibit several lag-times as, a population has time to adapt, its 

environment becomes modified, and in some cases, the occurrence of hybridization (e.g., 

Tamarix spp.). For these reasons, many invasive species ecologists prefer to use ecological niche 

models that rely on presence-only data and not make any assumptions on whether or not an 

absence point is truly an absence point. Presence-only models generally attempt to identify 

environmental similarities that are defined by the presence-points and/or compare them with the 

Figure 1. Diagrammatic representation of ecological niche modeling components for modeling species 

distributions.  Bottom part of the figure shows potential habitat distribution map for invasive plant 

dalmation toadflax (Linaria dalmatica) in Colorado, USA (adapted from Franklin, 2009). 
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environmental background. They make no distinction between presence and absence, rather base 

predictions largely on verified occurrences (Figure 1). 

GOALS AND OBJECTIVES 

The purpose of the modeling efforts for this project is to provide useful information to 

selected U.S. National Wildlife Refuges (NWR) and public/private partners by building on 

existing datasets and new field surveys conducted under this project. Broadly summarized, the 

goals are to:  

 Provide models/maps of the potential distribution and risk of particularly problematic 

invaders at two scales: (1) the extent of the participating NWR, and (2) the associated 

Landscape Conservation Cooperative (LCC). 

 Identify the environmental conditions that facilitate invasions for participating 

National Wildlife Refuges and the associated LCC. 

 Utilize proven spatial statistical methods for model training and evaluation. 

 Provide some insight on distribution trends and response of each of the targeted 

species for participating NWRs and the associated LCC. 

 

To meet these goals, we completed the following objectives, as listed in the Statement of Work: 

  

1) Conduct a literature review of selected invasive species to determine the best predictor 

variables to use in geospatial analyses.  

2) Assess the field data provided by USFWS and collaborate with Refuge staff to determine 

the appropriate model to use.   

3) Test multiple models and select the best approach for the available field data and 

geospatial predictors. 

4) Train models and Evaluate performances by multiple statistical means.   

5) Provide a final report that describes in detail our methods, results (including maps and 

evaluations), conclusions, and references.  

6) Provide all generated geospatial data and model results in ESRI ArcGIS formats. 

 

METHODS 

Study Sites and Priority Species 

 Four U.S. Fish and Wildlife Refuges were pre-selected for this study: Alligator River 

NWR in North Carolina; Quivira NWR in Kansas; Silvio O. Conte NWR in Connecticut, 

Massachusetts, New Hampshire and Vermont; and San Diego NWR in California. In addition to 

modeling at the refuge-scale, models were run at each of the associated Landscape Conservation 

Cooperatives. These are the South Atlantic LCC (Alligator River NWR), Great Plains LCC 

(Quivira NWR), North Atlantic LCC (Silvio O. Conte NWR) and California LCC (San Diego 

NWR). 
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 Although field sampling activities at each NWR targeted multiple invasive species, 

ecological niche models were limited to two priority species for each refuge determined at the 

Priority Workshops. For Alligator River NWR, the selected invaders were Phragmites spp. and 

Alternanthera philoxeroides (a.k.a. alligator weed); for Quivira NWR, Phragmites spp. and 

Tamarix spp. (a.k.a. tamarisk, salt cedar); for Silvio O. Conte NWR, Alliaria petiolata (a.k.a. 

garlic mustard) and Microstegium vimineum (a.k.a. Japanese stiltgrass); for San Diego NWR, 

Brachypodium distachyon (a.k.a. false brome) and Brassica tournefortii  (a.k.a. Sahara mustard). 

Once identified, occurrence data (i.e., presence-only) were collected at each NWR by our Utah 

State University collaborators. Occurrence data for the LCC landscapes were acquired from the 

National Institute of Invasive Species Science (NIISS; http://www.niiss.org/), EDDMapS 

(http://www.eddmaps.org/) and Global Biodiversity Information Facility (GBIF; 

http://www.gbif.org/) websites. After combining respective species data, all points that possessed 

a location accuracy error greater than one kilometer were removed.  

Model Selection and Comparisons 

 We selected the Maxent model to conduct all analyses for three primary reasons. First, 

multiple studies have found that Maxent regularly performs better, or as well, as other ecological 

niche models for invasive species (Ficetola et al., 2007, Evangelista et al., 2008, Kumar et al., 

2009). Secondly, Maxent is designed to handle the types of survey data collected for the study; 

specifically point data collected with a GPS (as opposed to plot data and percent cover) and 

presence-only (as opposed to presence-absence data). Third, Maxent has several built-in features 

that are of particular importance to refuge managers, including performance evaluations (e.g., 

Area Under the Curve) and percent contribution of predictor variables. 

The Maxent model was designed as a general-purpose predictive model that can be 

applied to incomplete data sets (Phillips et al., 2004, Phillips et al., 2006). Relatively new, the 

Maxent model is freely distributed on the web (www.cs.princeton.edu/~schapire/maxent/). It 

operates on the principle of maximum entropy, making inferences from available data while 

avoiding unfounded constraints from the unknown (Phillips et al., 2006). Entropy is the measure 

of uncertainty associated with a random variable; the greater the entropy, the greater the 

uncertainty. Adhering to these concepts, Maxent utilizes presence-only points of occurrence, 

avoiding absence data and evading assumptions on the range of a given species. Predictions are 

most often reported as relative logistic probabilities ranging from 0:1.  

The validation of model outputs from Maxent is accomplished in several ways. First, the 

user has the option of defining a percentage of the data for model testing that: (1) plots testing 

and training omissions against threshold; (2) plots predicted area against threshold; and (3) 

calculates the receiver operating curve (ROC). The Area Under the Curve (AUC) is calculated 

for each. Second, a jackknife option allows the estimation of the bias and standard error in the 

statistics and the test of variable importance. Finally, Maxent will generate response curves for 

each predictor variable. Maxent has also been found to perform well in cases of small sample 

sizes (as low as four; Pearson et al., 2007) and has recently been applied in remote sensing of 

invasive species (Evangelista et al., 2009, York et al., 2011). 
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To ensure that Maxent was the best model selected for this study, we tested it against 

three other ecological niche models that are also commonly used for predicting species 

occurrences at the refuge-scale only. These were Boosted Regression Trees (BRT), Multivariate 

Adaptive Regression Splines (MARS) and the Generalized Linear Model (GLM). Our tests were 

conducted for all species at the refuge scale except those associated with San Diego NWR.  

Boosted regression trees are similar to other tree based models in that they attempt to 

minimize the loss function by generalizing many simple classifications and regression trees. 

They accomplish this by applying rules to the predictors that partition the data into rectangles 

with the most homogeneous response (Elith et al., 2008). What makes BRT’s different from 

other tree based methods is in the resampling method it employs; boosting. Boosting is a form of 

re-sampling that, unlike other methods such as bagging or sub-sampling, applies a weighted 

probability of a response to be re-sampled based on previous classifications (Franklin, 2009). 

Generalized Linear Models are regression based models that are well suited for 

ecological data (Guisan et al., 2002). One of the first methods used in ecological niche modeling, 

GLMs are still common. GLMs are well established statistical modeling frameworks that use 

maximum likelihood and can handle non-normal distributions in the response variable with many 

predictors.  

Multivariate Adaptive Regression Splines are a piecewise step method capable of 

handling many predictors (Freidman, 1991). Relatively new to ecological niche modeling, 

MARS have become popular because they are computationally fast and can model complex 

relationships. MARS also allow for interaction between variables in predicting a species 

distribution (Franklin, 2009). 

Boosted regression trees, GLMs, and MARS all require absence points to model a species 

distribution. Absence points were not specifically collected for the species targeted in this report. 

For invasive species, true absence points are difficult to acquire and often unreliable (Brown et 

al., 1996). Therefore, absence points needed to be generated for these models. To accomplish 

this, we explored several absence data generation techniques. In similar modeling efforts, some 

have used the presence locations of another species that was included in the same survey to act 

as the absence points for the species being modeled (Phillips et al., 2009). In other cases, it may 

be more beneficial to generate random absence points within the surveyed area of the overall 

study area. While these randomly generated points will not perfectly represent absences for the 

species, collectively they are able to characterize less suitable habitat for the species being 

modeled. We conducted models using both techniques and chose the random-point method due 

to significantly improved evaluation statistics. 

Predictor Variables 

For each NWR, we attempted to collect environmental predictor variables (in GIS raster 

format) from each refuge to use in our models. These datasets varied considerably in quality and 

quantity, so additional data sources were identified to support modeling efforts (Appendix 1). 

For models run at LCC scales, 32 environmental predictor variables were used for all models. 

These included 19 seasonal climatic indices (BioClim; Table 1), elevation, number of annual 
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growing days and frost days, flow accumulation, distance from water, maximum and minimum 

annual temperature, slope (i.e., degrees), humidity, precipitation frequency, geology and solar 

radiation.  

 

Table 1. List and description of BioClim seasonal climatic indices used for LCC modeling. For more 

detailed information, see Hijmans, 2006. 

BioClim Predictor Variables 

Bio 1 Annual Mean Temperature 

Bio 2 Mean Diurnal Range (mean of monthly (max temp-min temp)) 

Bio 3 Isothermality (mean diurnal range/temperature annual range) 

Bio 4 Temperature Seasonality (standard deviation * 100) 

Bio 5 Max Temperature of Warmest Month 

Bio 6 Min Temperature of Coldest Month 

Bio 7 Temperature Annual Range (Bio 5 - Bio 6) 

Bio 8 Mean Temperature of Wettest Quarter 

Bio 9 Mean Temperature of Driest Quarter 

Bio 10 Mean Temperature of Warmest Quarter 

Bio 11 Mean Temperature of Coldest Quarter 

Bio 12 Annual Precipitation 

Bio 13 Precipitation of Wettest Month 

Bio 14 Precipitation of Driest Month 

Bio 15 Precipitation Seasonality (Coefficient of Variation) 

Bio 16 Precipitation of Wettest Quarter 

Bio 17 Precipitation of Driest Quarter 

Bio 18 Precipitation of Warmest Quarter 

Bio 19 Precipitation of Coldest Quarter 

 

Modeling  

The study areas or model’s spatial extent was defined by the boundaries of each NWR 

and LCC. Analyses at both the NWR and LCC scales consisted of ten replicate models. Each 

model used 80% of the presence points to train the model for each targeted invasive species and 

used the remaining 20% for model validation. Each additional model replicate used the same 

method; however, new training and validation points were randomly selected each time. 

The ten model iterations for each species were averaged in a single output and included a 

predictive map (ASCII file), average AUC value, and percent variable contributions. A final 

model was generated for each species excluding any predictive variables that had less than a 1% 

contribution in the replicates. To calculate the predicted area at risk for infestation, a 10% 

training presence logistic threshold was applied to each model output. This threshold displayed 

areas at risk of infestation for each species modeled and provided a way to estimate the area of 

predicted risk. When necessary, the regularization parameter was increased to reduced over-

fitting. 
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RESULTS 

Model Comparisons 

 Overall, Maxent produced the most reasonable distribution maps across all evaluation 

metrics for alligator weed (Figure 2), Phragmites spp. (Figure 3, Appendix 2), tamarisk 

(Appendix 3), and japanese stiltgrass (Appendix 4). Comparisons of model training data and test 

data evaluation statistics support this in three of the four tests with Maxent reporting a higher 

AUC than the other model methods.   

However, model evaluation and accuracy is not solely dependent on automated 

evaluation statistics produced by each development method. Distribution maps produced by all 

models were carefully assessed in regards to life history and on-the-ground observations of the 

invasive species in question. The three tests with highest AUC values reported by Maxent 

models are alligator weed at the Alligator River NWR, Phragmites spp. at the Alligator River 

NWR, and tamarisk at Quivira NWR with reported values of 0.98, 0.97, and 0.82, respectively. 

These three tests also corresponded with what we believed to be the most accurate models 

representing local observations of the species within its particular refuge. 

 

 

Table 2. Table of comparison AUC values reported by all models tested at both the refuge scale and LCC 

scale for each invasive species. The chosen Maxent modeling method values include Training and Test 

AUC’s. 

   Maxent BRT MARS GLM 

  Training  Test     

Alligator River       

  Alligator weed 0.99 0.98 0.89 0.78 0.77 

  Phragmites spp. 0.98 0.97 0.96 0.82 0.66 

Quivira        

  Phragmites spp. 0.97 0.97 N/A 0.98 0.98 

  Tamarisk 0.84 0.82 0.88 0.73 0.61 

Silvio O. Conte        

  Garlic mustard 0.95 0.82 0.96 0.97 0.82 

 

San Diego 

 Japanese stiltgrass 

 

0.99 0.99 N/A 1 0.98 

 

  False brome 0.86 0.83 N/A N/A N/A 

  Sahara mustard 0.94 0.88 N/A N/A N/A 
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The fourth test, Phragmites spp. at Quivira NWR, produced a top AUC value of 0.98 

using a GLM. Following were MARS and Maxent results with AUC values of 0.98 and 0.97, 

respectively (Table 2). Due to the lack of observations of Phragmites spp. within the surveyed 

area of the refuge (where GLM and MARS predict its presence), our confidence in the MARS 

and GLM predictive models were lowered significantly. The 0.01 difference between the top 

performing GLM model and Maxent model evaluation statistics was not noteworthy enough to 

sequester belief in what we believe to be the best representation of infestation risk on-the-

ground. Therefore, our comparisons of BRT, MARS, Maxent and GLM model results supported 

our decision to use the Maxent model for all tests in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model results for alligator weed at Alligator River NWR. The models tested were (A) 

Boosted Regression Tree, (B) Multivariate Adaptive Regression Splines, (C) Maxent and (D) General 

Linear Model. 
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Figure 3. Model results for tamarisk at Quivira NWR. The models tested were (A) Boosted Regression 

Tree, (B) Multivariate Adaptive Regression Splines, (C) Maxent and (D) General Linear Model. 

 

Final Models: Alligator River NWR and South Atlantic LCC 

Within the Alligator River NWR boundaries, the Maxent model for alligator weed 

predicted 7,649 acres at risk of invasion or approximately 3.5 % of the total refuge acreage. The 

AUC evaluation was 0.98 with the distance from water having the most contribution to the final 

model (Table 3). The model shows existing canals and other water sources as the area most at 

risk (Figure 4). The model also predicted higher risk along highway 64 that runs east and west 

across the refuge. 

 

Table 3. The top three environmental predictors and their percent contribution for alligator weed in 

Alligator River NWR. 

Predictor Percent Contribution 

Distance to Water 62.6% 

Land Cover Type 20.7% 

Slope 8% 
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For the South Atlantic LCC, approximately 26,200,000 acres or 24.9% of the area is at 

risk of invasion by alligator weed, provided surface water is present. The number of frost days 

and humidity contributed the most to the final Maxent model prediction (Table 4), which 

performed with an AUC evaluation of 0.89. The higher risk areas are near the Atlantic coast and 

along major river drainages (Figure 4). 

 

Table 4. The top five environmental predictors and their percent contribution for alligator weed in South 

Atlantic LCC. 

Predictor Percent Contribution 

Number of Frost Days 20.7% 

Humidity 17.9% 

Precipitation of Wettest Quarter (Bio 16) 10% 

Minimum Temperature of Coldest Month (Bio 6) 7% 

Number of Growing Days 6.9% 

 

 

 

 

Figure 4. Predicted distribution of alligator weed in Alligator River NWR (left) and the South Atlantic 

LCC (right) using the Maxent model.  

 

The Maxent results for Phragmites spp. at the Alligator River NWR predicted 25,697 

acres at risk of infestation, or 11.75% of the refuge. Land cover type and distance to water were 

the top predictor variables (Table 5) with the AUC evaluation at 0.97. Similar to the alligator 



11 
 

weed model, the predicted risk for Phragmites spp. was concentrated around existing canals and 

water sources but showed a higher risk on the north east coast from Manns harbor south along 

the Croatan sound (Figure 5).  

  

Table 5. Top three environmental predictors and their percent contribution for Phragmites spp. in 

Alligator River NWR. 

Predictor Percent Contribution 

Land Cover Type 35.9% 

Distance to Water 32.1% 

Prescribed Fire Treatment Areas 11.3% 

 

 

For the South Atlantic LCC, approximately 35,500,000 acres or 33.7% of the area is at 

risk of Phragmites spp. infestation. The Maxent model had an AUC evaluation of 0.79 with 

mean diurnal range and solar radiation having greatest predictive contributions (Table 6). The 

model predicted high risk near the coastal areas and further north in the LCC (Figure 5). 

 

Table 6. Top five environmental predictors and their percent contribution for Phragmites spp. in South 

Atlantic LCC. 

Predictor Percent Contribution 

Mean Diurnal Range (Bio 2) 20% 

Radiation 18.6% 

Elevation 17.3% 

Geology 5.5% 

Mean Temperature of Wettest Quarter (Bio 8) 5.1% 
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Figure 5. Predicted distribution of Phragmites spp. in Alligator River NWR (left) and the South Atlantic 

LCC (right) using the Maxent model. 

 

Final Models: Quivira NWR and Great Plains LCC 

Within the Quivira NWR, the Maxent model predicted that 28,000 acres were at risk for 

tamarisk invasion, or 49.5% of the refuge. The model had an AUC value of 0.82 with elevation, 

soils and distance to water having almost equal contributions and the greatest predictive 

contributions of all the predictors used to develop the model (Table 7). Higher risk areas were 

predicted in the north and southeast near water sources and moist soils and along streams (Figure 

6). 

 

Table 7. Top three environmental predictors and their percent contribution for tamarisk in Quivira NWR. 

Predictor Percent Contribution 

Elevation 33.8% 

Soil 27.7% 

Distance to Water 23.3% 

 

The Great Plains LCC, covering portions of 8 states, was predicted to have 48,700,000 

acres, or 20.0% of the total area, at risk to tamarisk invasion. The model had an AUC value of 

0.89 with distance to water and geology having the greatest predictive contributions (Table 8). 

Model predictions of tamarisk risk at the Great Plans LCC were concentrated along river 

corridors and higher in the west than east (Figure 6).  
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Table 8. Top five environmental predictors and their percent contribution for tamarisk in Great Plains 

LCC. 

Predictor Percent Contribution 

Distance to Water 34.2% 

Geology 16.7% 

Radiation 11.1% 

Precipitation of Wettest Quarter (Bio 16) 7.5% 

Temperature Seasonality (Bio 4) 6.2% 

 

 

 

 
Figure 6. Predicted distribution of tamarisk in Quivira NWR (left) and the Great Plains LCC (right) using 

the Maxent model 

 

For the Quivira NWR, Phragmites spp. predicted 3,617 acres or 12.9% of the total area at 

risk to invasion. The Maxent results had an AUC value of 0.97 with the elevation, soil and land 

cover type as the top three environmental predictor variables in the final model (Table 9). Areas 

of predicted higher risk of Phragmites spp. were primarily in and around Little Salt Marsh and 

nearby wetlands in the southern portion of Quivira NWR (Figure 7). 
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Table 9. Top three environmental predictors and their percent contribution for Phragmites spp. in Quivira 

NWR. 

Predictor Percent Contribution 

Elevation 56.8% 

Soil 18.6% 

Land Cover Type 12.2% 

 

 

For the Great Plains LCC, the model predicted that 142,200,000 acres or 58.5% of total 

area was at risk to Phragmites spp.. The model results had a lower AUC value of 0.68 with 

distance to water having the greatest predictive contribution (Table 10). Predicted risk for the 

Great Plains LCC was distributed along river cooridros and showed higher risk in the norhter 

portion of the LCC (Figure 7).  

 

Table 10. The top five environmental predictors and their percent contribution for Phragmites spp. in 

Great Plains LCC. 

Predictor Percent Contribution 

Distance to Water 36.2% 

Frequency of Precipitation 12.2% 

Temperature Annual Range (Bio 7) 9.5% 

Temperature Seasonality (Bio 4) 7.2% 

Mean Temperature of Wettest Quarter (Bio 8) 5.7% 
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Figure 7. Predicted distribution of Phragmites spp. in Quivira NWR (left) and the Great Plains LCC 

(right) using the Maxent model. 

 

Final Models: Silvio O. Conte NWR and North Atlantic LCC  

Within the Silvio O. Conte NWR boundaries, the Maxent model for garlic mustard 

predicted 1,150,000 acres at risk of invasion or approximately 45.5% of the total watershed 

acreage. The AUC evaluation was 0.82 with the elevation having the most predictive 

contribution (Table 11). Higher areas of risk were concentrated along major rivers and in the 

southern portion of the NWR. 

  

Table 11. The top three environmental predictors and their percent contribution for garlic mustard in 

Silvio O. Conte NWR. 

Predictor Percent Contribution 

Elevation 49.2% 

Soil 36.5% 

Land Cover Type 10.3% 

 

For the North Atlantic LCC, approximately 27,000,000 acres or 28.5% of the area is at 

risk of infestation by garlic mustard (Figure 8). The maximum temperature and geology 

contributed the most to the final Maxent model prediction (Table 12), which performed with an 

AUC evaluation of 0.89.  
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Table 12. The top five environmental predictors and their percent contribution for garlic mustard in North 

Atlantic LCC. 

Predictor Percent Contribution 

Max Temperature of Warmest Month (Bio 5) 29.3% 

Maximum Temperature 13.1% 

Geology 11.9% 

Min Temperature of Coldest Month (Bio 6) 7.2% 

Number of Growing Days 4.8% 

 

 

 

 

 
 

 

Figure 8. Predicted distribution of garlic mustard in Silvio O, Conte NWR (left) and North Atlantic LCC 

(right) using the Maxent model. 

 

Within the Silvio O. Conte NWR watershed, the Maxent model predicted that 82,000 

acres were at risk for Japanese stiltgrass invasion, or 22.7% of the refuge watershed. The 

predicted area at risk was restricted to the south central portion of the NWR (Figure 9). The 

model had an AUC value of 0.98 with elevation, soils, and distance to water having the greatest 

predictive contributions (Table 13). The area of risk was  

Risk of 
Infestation

High Risk

 

Low Risk
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Table 13. Top three environmental predictors and their percent contribution for Japanese stiltgrass in 

Silvio O. Conte NWR. 

Predictor Percent Contribution 

Soil  53.8% 

Elevation 38.8% 

Land Cover Type 4.6% 

 

The North Atlantic LCC, was predicted to have 24,000,000 acres, or 25.3% of the total 

area, at risk to Japanese stiltgrass invasion. The model reported an AUC value of 0.89 with 

humidity and radiation having the greatest predictive contributions (Table 14).  

 

 

Table 14. Top five environmental predictors and their percent contribution for Japanese stiltgrass in the 

North Atlantic LCC. 

 

 

Predictor Percent Contribution 

Humidity 36.8% 

Radiation 18.1% 

Geology 10.3% 

Annual Precipitation 10.2% 

Maximum Temperature 6.7% 
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Figure 9. Predicted distribution of Japanese stiltgrass in in Silvio O, Conte NWR (left) North Atlantic 

LCC (right) using the Maxent model. 

 

Final Models: San Diego NWR and California LCC 

At the San Diego NWR, false brome was predicted to be a potential risk for 4,658 acres 

or 41.7% of the refuge. The Maxent model had an AUC value of 0.83 with soils as the top 

contributing predictor to false brome’s distribution (Table 15). Areas of predicted higher risk of 

false brome were throughout the western, northern and northeastern part of the refuge (Figure 

10). 

 

Table 15. Top three environmental predictors and their percent contribution for false brome in San Diego 

NWR. 

Predictor Percent Contribution 

Soils 

Land Cover Type 

Slope 

37.6% 

20.8% 

24.3% 

 

The model of false brome at the California LCC scale predicted 19,188,000 acres or 

29.7% of the LCC area is at risk for false brome.  The humidity predictor had the largest 

influence on the output, while the temperature seasonality had the second largest influence 

(Table 16). False brome is projected to be distributed from San Diego to Los Angeles, around the 

Bay Area, and west of the Sierra foothills within the Sacramento Valley (Figure 10). 
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Table 16. Top five environmental predictors and their percent contribution for false brome in the 

California LCC. 

Predictor Percent Contribution 

Humidity 42.6% 

Temperature Seasonality (bio 4) 21.2% 

Distance to Water 11.4% 

Precipitation of Seasonality (bio 15) 8.5% 

Elevation 5.3% 

 

 

 

 

 

 

 

The Sahara mustard is projected to encompass 1,722 acres of the San Diego NWR.  This 

equals 15.4% of the refuge Extent.  For the mustard, the Maxent model had an AUC value of 

0.88 with elevation being the top projector for the distribution (Table 17). Maxent projected 

Sahara mustard to have a higher likelihood of occurrence in the northeastern part of the refuge. 
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Low Risk

Figure 10. Predicted distribution of false brome in San Diego NWR (left) and California LCC 

(right) using the Maxent model. 



20 
 

 

 

 

Table 17. Top three environmental predictors and their percent contribution for Sahara mustard in San 

Diego NWR. 

Predictor Percent Contribution 

Elevation 

Soil 

Land Cover Type 

30.8% 

26.2% 

17.8% 

 

The model for the Sahara mustard at the California LCC level predicted 17,129,000 acres 

at risk, approximately 26.5% of the California LCC. Slope had the most influence of where the 

Sahara mustard is projected, while the mean temperature of the wettest quarter also had the 

second largest influence (Table 18). Sahara mustard has a higher risk of vitality on the Southern 

California coastal environments (Figure 11).  

 

 

Table 18. Top five environmental predictors and their percent contribution for Sahara mustard in the 

California LCC. 

Predictor Percent Contribution 

Slope 58.0% 

Mean Temperature of Wettest Quarter (bio 8) 14.2% 

Mean Temperature of Coldest Quarter (bio 11) 11.9% 

Number of Frost Days 5.3% 

Annual Precipitation (bio 12) 2.6% 
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DISCUSSION 

All Maxent models for the priority invasive species at the refuge and landscape scale 

performed well with an AUC > 0.80. The results of these models provide maps showing 

potential risk of the invasive species for the selected refuges and the associated LCCs. All 

models used tested and proven statistical methods for model development and model evaluation. 

These models also identified the environmental conditions that contribute the most to each 

species potential distribution. In addition, the model results provide estimates of the area at risk 

of invasion in terms of acres and proportion of modeled area for each species at both scales 

(refuge and LCC). Although we tested multiple modeling techniques, only Maxent demonstrated 

consistent performance.   

 The Maxent modeling method outperformed the presence-absence methods that were 

tested in this report in both statistical evaluation and comparing model predictions to in the field 

observed distributions. Even in the cases where the AUC for Maxent was not the highest, the 

model predictions matched what was observed at the refuge much more accurately than the 

higher statistically performing methods. The relatively poor performance of the other methods is 

most likely due to the sampling design. Unlike Maxent, the presence-absence methods require 

stricter sampling designs that fit the statistical designs to perform reliably (Cawsay et al., 2002). 

While methods are being developed to generate suitable absence point for these presence-

absence methods (e.g., trend surface analysis; Acevedo et al., 2012), Maxent continues to be the 

Risk of 
Infestation

High Risk

 

Low Risk

Figure 11. Predicted distribution of Sahara mustard in San Diego NWR (left) and California LCC (right) 

using the Maxent model. 
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most appropriate modeling technique for this type of data (i.e., opportunistic sampling and 

invasive species) collected for this report (Phillips et al., 2009).  

Limitations of the quantity and/or the distribution of training data reduced model 

performance for some species and scales (e.g., garlic mustard at Silvio O. Conte NWR and 

Sahara mustard at the California LCC extent). While models still performed well in these 

instances, additional data would likely increase the accuracy of model predictions. Furthermore, 

for some of the refuges, there was little to no GIS data available which also constrained fine-

scale modeling (e.g., management activities, treatment). Although in these cases additional 

environmental predictor variables were downloaded to supplement the model, there may have 

been predictor variables that were not included that were importance drivers of the species 

distribution.   

Future efforts to model potential risk of invasive species using ecological niche models 

should focus on collecting presence points that capture the spatial and environmental range of the 

species of interest across the study area (Thuiller et al., 2004). Although the Maxent model can 

handle a variety of collected data (e.g., observations, sample plots, historical records), we 

strongly recommend that a system sampling strategy be considered for future efforts. By 

sampling throughout each NWR and across the environmental range, predictions can be greatly 

improved and be more informative. If absence data are collected, the presence-absence methods 

for modeling potential distributions may also provide reliable predictions, but the issues of true 

absences for invasive species are likely to still cause concern when interpreting model results 

(Václavík and Meentemeyer, 2009).   

 

CONCLUSION 

Ecological niche models are commonly used to help anticipate and predict species 

invasions across geographic scales (Peterson et al., 2003). At the refuge level, these results 

provide statistically supported guidance for directing management initiatives, prioritizing early 

detection/rapid response, and quantifying risk. For example, model predictions are often used to 

prioritize search efforts to those areas with potentially higher invasion risk reducing the time and 

area to search, while conserving economic and management resources. Furthermore, the 

estimates of potential acres at risk in combination with the maps of predicted risk can provide 

accepted risk assessments to inform policy makers on land-management decisions (Arriaga et al., 

2004), and be used to solicit funds for species specific management. As new species locations 

are collected, additional and higher quality predictor layers are developed, and modeling 

methods improve, distribution predictions can be iteratively updated to provide the most current 

maps of invasive species risk.  
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APPENDICES 

 

Appendix 1. Predictor variables used to generate models at each refuge. The Source of the predictor 

variable Land Cover Type varied from GAP (Quivira), DARE (Alligator River), and Landfire(Silvio O. 

Conte), Vegetation 1995 (San Diego) depending on the refuge. 

 

Predictor Alligator 

River 

Quivira Silvio O. 

Conte 

San 

Diego 

Aspect x x x x 

Digital elevation model x x x x 

Distance to water x x x x 

Fire Management Areas x    

Invasive Plant Management Areas  x   

Land Cover Type x x x x 

Normalized Difference Vegetation Index (NDVI)  x   

Pretreatment areas x    

Slope x x x x 

Soils (USGS SURGO) x x x x 

Vegetation Management  x   

Distance to road    x 
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Appendix 2. Model results for Phragmites spp. at Alligator River NWR. The models tested were 

(A) Boosted Regression Tree, (B) Multivariate Adaptive Regression Splines, (C) Maxent and (D) 

General Linear Model. 
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Appendix 3. Model results for tamarisk at Quivira NWR. The models tested were (A) Boosted 

Regression Tree, (B) Multivariate Adaptive Regression Splines, (C) Maxent and (D) General Linear 

Model. 
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Appendix 4. Model results for Japanese stiltgrass at Silvio O. Conte NWR. The models tested were 

(A) Boosted Regression Tree, (B) Multivariate Adaptive Regression Splines, (C) Maxent and (D) 

General Linear Model. 


